Abstract

Changes in spatio-temporal gait parameters and their variability during balance-challenging tasks are markers of motor performance linked to fall risk. Radio frequency (RF) sensors hold great promise towards achieving continuous remote monitoring of these parameters. To establish the concurrent validity of RF-based gait metrics extracted using micro-Doppler (µD) signatures and to determine whether these metrics are sensitive to gait modifications created by multidirectional visual perturbations. Fifteen participants walked overground in a virtual environment (VE) and VE with medio-lateral (ML) and antero-posterior (AP) perturbations. An optoelectronic motion capture system and one RF sensor were used to extract the linear velocity of the trunk and estimate step time (ST), step velocity (SV), step length (SL), and their variability (STV, SVV, and SLV). Intra-class coefficient for consistency (ICC), mean and standard deviation of the differences (MD), 95 % limits of agreement, and Pearson correlation coefficients (r) were used to determine concurrent validity. One-way repeated-measures analysis of variance was used to analyze the main and interaction effects of visual conditions. All outcomes showed good to excellent reliability (r>0.795, ICC>0.886). Average gait parameters showed good to excellent agreement, with values obtained with the RF sensor systematically smaller than the values obtained with the markers (MD of 0.001 s, 0.09 m/s, and 0.06 m). Gait variability parameters showed poor to moderate agreement, with values obtained with the RF sensor systematically larger than those obtained with the markers (MD of 1.9 %-3.9 %). Both measurement systems reported decreased SL and SV during ML perturbations, but the gait variability parameters extracted with the radar were not able to detect the higher STV and SLV during this condition. The radar µD signature is a valid and reliable method for the assessment of average spatio-temporal gait parameters but gait variability measures need to be viewed with caution because of the lower levels of agreement and sensitivity to ML visual perturbations. This work represents an initial investigation for the development of a low-cost system that will facilitate aging-in-place by providing remote monitoring of gait in natural settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.