Abstract
To describe the total and unbound population pharmacokinetics of a 2 g three-times-weekly post-dialysis ceftriaxone regimen in Indigenous Australian patients requiring hemodialysis. A pharmacokinetic study was carried out in the dialysis unit of a remote Australian hospital. Adult Indigenous patients on intermittent hemodialysis (using a high-flux dialyzer) and treated with a 2 g three-times-weekly ceftriaxone regimen were recruited. Plasma samples were serially collected over two dosing intervals and assayed using validated methodology. Population pharmacokinetic analysis and Monte Carlo simulations were performed using Pmetrics in R. The probability of pharmacokinetic/pharmacodynamic target attainment (unbound trough concentrations ≥1 mg/L) and toxicity [trough concentrations (total) ≥100 mg/L] were simulated for various dosing strategies. Total and unbound concentrations were measured in 122 plasma samples collected from 16 patients (13 female) with median age 57 years. A two-compartment model including protein-binding adequately described the data, with serum bilirubin concentrations associated (inversely) with ceftriaxone clearance. The 2 g three-times-weekly regimen achieved 98% probability to maintain unbound ceftriaxone concentrations ≥1 mg/L for a serum bilirubin of 5 µmol/L. Incremental accumulation of ceftriaxone was observed in those with bilirubin concentrations >5 µmol/L. Three-times-weekly regimens were less probable to achieve toxic exposures compared with once-daily regimens. Ceftriaxone clearance was increased by >10-fold during dialysis. A novel 2 g three-times-weekly post-dialysis ceftriaxone regimen can be recommended for a bacterial infection with an MIC ≤1 mg/L. A 1 g three-times-weekly post-dialysis regimen is recommended for those with serum bilirubin ≥10 µmol/L. Administration of ceftriaxone during dialysis is not recommended.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.