Abstract

BackgroundOne of the increasingly accepted methods to evaluate the privacy of synthetic data is by measuring the risk of membership disclosure. This is a measure of the F1 accuracy that an adversary would correctly ascertain that a target individual from the same population as the real data is in the dataset used to train the generative model, and is commonly estimated using a data partitioning methodology with a 0.5 partitioning parameter.ObjectiveValidate the membership disclosure F1 score, evaluate and improve the parametrization of the partitioning method, and provide a benchmark for its interpretation.Materials and methodsWe performed a simulated membership disclosure attack on 4 population datasets: an Ontario COVID-19 dataset, a state hospital discharge dataset, a national health survey, and an international COVID-19 behavioral survey. Two generative methods were evaluated: sequential synthesis and a generative adversarial network. A theoretical analysis and a simulation were used to determine the correct partitioning parameter that would give the same F1 score as a ground truth simulated membership disclosure attack.ResultsThe default 0.5 parameter can give quite inaccurate membership disclosure values. The proportion of records from the training dataset in the attack dataset must be equal to the sampling fraction of the real dataset from the population. The approach is demonstrated on 7 clinical trial datasets.ConclusionsOur proposed parameterization, as well as interpretation and generative model training guidance provide a theoretically and empirically grounded basis for evaluating and managing membership disclosure risk for synthetic data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.