Abstract

Because of the importance of special functions, several books and a large collection of papers have been devoted to their use and computation, the most well-known being the Abramowitz and Stegun handbook (Abramowitz and Stegun, 1964) [1] and its successor (Olver et al. 0000) [2]. However, until now no environment offers routines for the provable correct multiprecision and radix-independent evaluation of these special functions. We point out how we make good use of series and limit-periodic continued fraction representations in a package that is being developed at the University of Antwerp. Our scalable precision technique is mainly based on the use of sharpened a priori truncation and round-off error upper bounds for real arguments. The implementation is validated in the sense that it returns a sharp interval enclosure for the requested function evaluation, at the same cost as the evaluation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.