Abstract

Contracted Gaussian-type function (CGTF) basis sets are reported for valence p orbitals of the six alkali and alkaline-earth atoms Li, Be, Na, Mg, K, and Ca for molecular applications. These sets are constructed by Roothaan–Hartree–Fock calculations for the ns → np excited states of atoms, in which both linear and nonlinear parameters of CGTFs are variationally optimized. The present CGTF sets reproduce well the numerical Hartree–Fock ns → np excitation energies: the largest error is 0.0009 hartrees for Li. New CGTFs are tested with diatomic Li2, Na2, K2, and MH molecules, where M = Li, Be, Na, Mg, K, and Ca, by self-consistent-field (SCF) and multiconfiguration SCF calculations. The resultant spectroscopic constants compare well with those of more elaborate calculations and are sufficiently close to experimental values, supporting the efficiency of the present set for the valence p orbitals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.