Abstract

Thin film solar cells based on the kesterite material with the general composition Cu2ZnSn(Se,S)4 can be a substitute for the more common chalcopyrites (Cu(In,Ga)(Se,S)2) with a similar band gap range. When replacing the anion sulfide with selenide, the optical band gap of kesterite changes from 1.5 to 1 eV. Here we report on a study of the valence band maximum and conduction band minimum energies of kesterites with either S or Se as the anion. Knowing these positions is crucial for the design of solar cells in order to match the bands of the absorber material with those of the subsequent functional layers like buffer or window layer. Their relative positions were studied using photoelectron spectroscopy of the valence band edge and x-ray absorption spectroscopy of the cations Cu, Zn, and Sn, respectively. The experimental results are interpreted and confirmed in terms of calculations based on density-functional theory and the GW approach of the many-body theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.