Abstract
Paraganglia are associated with every branch of the rat vagus nerve except the pharyngeal branch. Some of the paraganglia closely resemble the glomus caroticum, whereas others appear like small, intensely fluorescent (SIF) cells of autonomic ganglia. The paraganglionic cells of SIF cell-like bodies (SLB) store catecholamines (the most abundant is probably noradrenaline) and in some cases neurotensin. The innervation pattern of SLB is variable and their physiological role remains unclear. Paraganglionic cells of glomus-like bodies (GLB) predominantly store dopamine and probably also to a lesser extent noradrenaline. These putative chemoreceptor organs receive sensory innervation from nodose ganglion neurons as revealed by degeneration experiments and by anterograde neuronal tracing. Substance P- and calcitonin gene-related peptide-immunoreactive fibres seen in the region of vascular entry into the GLB may account for some of these sensory fibres, but the peptide/classical transmitter stored in sensory terminals synapsing on paraganglionic cells is unknown. Ultrastructural immunocytochemistry revealed vasoactive intestinal polypeptide (VIP)-immunoreactive fibres lying in the interstitial space between paraganglionic cells and large capillaries. These fibres may originate from VIP-immunoreactive neurons, being frequently attached to GLB. The major difference between GLB and the glomus caroticum concerns their blood supply and related innervation: Arteries and arterioles do not penetrate into GLB and, accordingly, noradrenaline- and neuropeptide Y-containing nerve fibres are lacking within GLB. This peculiar arrangement of paraganglionic parenchyma and arterial blood supply may be one of the reasons for the different physiological properties of vagal and carotid arterial chemoreceptors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.