Abstract
The vacuum drying characteristics of eggplant were investigated. Drying experiments were carried out at vacuum chamber pressures of 2.5, 5 and 10 kPa, and drying temperature ranging from 30 to 50 °C. The effects of drying pressure and temperature on the drying rate and drying shrinkage of the eggplant samples were evaluated. The suitable model for describing the vacuum drying process was chosen by fitting four commonly used drying models and a suggested polynomial model to the experimental data; the effective moisture diffusivity and activation energy were calculated using an infinite series solution of Fick’s diffusion equation. The results showed that increasing drying temperature accelerated the vacuum drying process, while drying chamber pressure did not show significant effect on the drying process within the temperature range investigated. Drying shrinkage of the samples was observed to be independent of drying temperature, but increased notably with an increase in drying chamber pressure. A linear relationship between drying shrinkage ratio and dry basis moisture content was observed. The goodness of fit tests indicated that the proposed polynomial model gave the best fit to experimental results among the five tested drying models. The temperature dependence of the effective moisture diffusivity for the vacuum drying of the eggplant samples was satisfactorily described by an Arrhenius-type relationship.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.