Abstract
Many industrial applications require components with an increasing geometric complexity and specific material properties. Furthermore, the production costs and the affordable production time have to be minimized in order to ensure competitiveness. These divergent objectives are difficult to achieve with a single manufacturing technology. Therefore, joining of selective laser melted (SLM) complex shaped parts to conventionally produced high-volume components provides a high potential. The current investigation focuses on vacuum brazing conventionally manufactured to non-hipped SLM generated AISI 316L stainless steel. Cylindrical samples (Ø 14 mm) were brazed using a B-Ni2 foil (50 µm) at 1050 °C for 30 minutes in vacuum (< 4.5·10-5 mbar) and directly cooled down to room temperature with 4 bar overpressure to prevent the formation of chromium carbides within the base material. It could be proven that the brazing quality is extremely sensitive to even marginal porosities (< 0.2 %) and/or oxide inclusions of the SLM microstructure. Therefore, the fracture mirror in SLM/conventional steel brazements was at the joint braze/SLM steel interface, leading to a joint strength of 317.4 MPa. This corresponds to only 67.4 % of the joint strength obtained with conventional steel, where the fracture propagated through the diffusion area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.