Abstract

The pulsed flow of solid $^{4}\mathrm{He}$ through a narrow capillary in a flow system which issues into vacuum is investigated at temperatures between 1.64 and 2.66 K and pressures between 54 and 104 bars. After each pulse three different capillary flow regimes are observed as the upstream pressure decreases: an oscillatory [mini-geyser (MG)] regime, a constant flow (CF) regime with a linearly decreasing pressure difference, and a nonresistant (NR) regime. A quantitative analysis of the three regimes suggests that the flow of solid $^{4}\mathrm{He}$ is driven by a counterflow of excess vacancies, which are injected downstream of the capillary at the solid/liquid interface near the micrometric orifice exposed to vacuum. The CF regime, where the flow velocity is found to be independent of the pressure difference, and the NR regime, where the solid flows as a Bernoulli fluid, suggest a new dynamic phase of solid helium induced by a steady influx of vacancies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.