Abstract

Point defects in the binary group-IV monochalcogenide monolayers of SnS, SnSe, GeS, GeSe are investigated using density-functional-theory calculations. Several stable configurations are found for oxygen defects, however we give evidence that these materials are less prone to oxidation than phosphorene, with which monochalcogenides are isoelectronic and share the same orthorhombic structure. Concurrent oxygen defects are expected to be vacancies and substitutional oxygen. We show that it is energetically favorable oxygen be incorporated into the layers substituting for a chalcogen (O S/Se defects), and different from most of the other defects investigated, this defect preserves the electronic structure of the material. Thus, we suggest that annealing treatments can be useful for the treatment of functional materials where loss mechanisms due to the presence of defects are undesirable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.