Abstract

Antibacterial photodynamic therapy (APDT) has received considerable attention owing to its superiority. ZIF-8 was used to address the poor stability of the photosensitizer Rose Bengal (RB) encapsulation to synthesize RB@ZIF-8 NPs, which were doped into a composite film with poly (ϵ-caprolactone) (PCL) and polyvinyl alcohol-quaternary ammonium chitosan (PVA-QCS) as substrates to form composite films (PQZ). The composite films exhibited excellent photodynamic sterilization and good resistance to bacterial adhesion. The tensile strength of the film increased to 43.4 MPa, which was approximately 1.8 times that of the PCL film. With the addition of SiO2 and RB@ZIF-8 NPs, the film exhibited water repellency and UV-blocking properties. RAW264.7 cells were selected using the MTT method to confirm that the composite films had excellent biocompatibility and had no significant inhibitory effect on cell growth and reproduction. PQZ multifunctional composite films show potential as novel APDT antimicrobial materials for food packaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.