Abstract

AbstractSpectroelectrochemistry was used to study the electron trapping and rectifying behavior in several diphenylamine endgroup polymeric bilayers. Various combinations of the following monomers were pairwise sequentially electropolymerized onto ITO transparent electrodes: FD, DNTD, DPTD and Cl4DPTD. Poly(FD) is a p-type material while poly(DNTD), poly(DPTD) and poly(Cl4DPTD) are bipolar materials being both n-type and p-type. Bilayers of ITO|poly(FD)|poly (DNTD) or ITO|poly (FD)|poly (DPTD), block electrons from reducing the outer layer even at -1.0 V vs Ag/AgCl, yet holes effectively oxidize both layers. The LUMO differences between poly(DNTD) and poly(Cl4DPTD) or poly(DPTD) and poly(Cl4DPTD) provide a large enough electronic barrier that electron trapping can occur between these n-type materials. The visible spectra results imply that these polymers, poly(DPTD) or poly(Cl4DPTD) can be used as photovoltaic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.