Abstract

High-resolution spectral scans of solar ultraviolet radiation (UVR) were obtained directly beneath the 4.0–5.0 m thick, perennial ice cover of Lake Hoare, South Victoria Land, Antarctica. Both UVA (320–400 nm) and UVB (280–320 nm) radiation were detectable beneath the ice using a diver-deployed, underwater scanning spectroradiometer which permitted accurate measurement in the 280–340 nm range, while avoiding effects of surface shading and/or hole effects. UVR at wavelengths <310 nm was not detectable below the ice. This lower wavelength UVB appears to penetrate the Lake Hoare ice to depths of no more than 1.5 m during relatively cloud-free austral summer days. Based upon estimated biologically effective UVR dosages and DNA dosimeter data, exposure of benthic and planktonic microbes to the UVR encountered immediately beneath the ice is unlikely to inhibit microbial metabolism. Although waters of oligotrophic antarctic lakes are highly transparent to UVR, the thick, high scattering and optically dense ice covers on many of these lakes offers organisms a degree of protection largely unavailable in temperate and tropical systems. Thinning or complete loss of these overlying ice covers is likely to have major consequences for the structure of antarctic lake microbial communities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.