Abstract
ABSTRACTIn the gas phase, most of the ionized or neutral molecules detected in the interstellar and circumstellar media contain at least one carbon atom. Carbon chemistry plays thus a dominant role in the understanding of the structure and evolution of the interstellar medium (ISM). One particular zone of interest to observe small carbonaceous radicals and molecules, are the sharp molecular clouds edges exposed to energetic photons. These photon-dominated regions are rich in these hydrocarbons (like CCH, c-C3H2, C4H), and provide tests for the chemistry models in the diffuse to molecular transition. The pure gas phase models generally fail in reproducing the abundance of many of the observed species, and several authors suggest such abundances may arise from the products of the VUV photodissociation of carbonaceous grains or PAHs. Hydrogenated amorphous carbons (a-C:H or HAC), abundantly observed in the ISM, could also be at the origin of many of these small carbonaceous radicals. Experimentally, this work investigates the production and release of hydrocarbons from the VUV photolysis of a-C:H interstellar analogues under ultra-high vacuum. The experimental results are applied to a Photon Dominated Region model to constrain the impact of this release on the observed gas phase species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.