Abstract

A novel synthesis route to organic-capped and colloidal ZnO quantum dots (QDs) has been developed. Specifically, zinc-di- t-butoxide and zinc-di- n-butoxide are hydrolyzed by very dilute water (400–600 mass ppm) in hydrophilic benzylamine and polymerized to ZnO by dehydration and/or a butanol elimination reaction. Growth of the ZnO QDs and exchange of the surface capping ligand from the hydroxyl groups and/or benzylamine to the oleylamine occur by heating the colloidal solution after addition of the oleylamine at 100–180 °C. The final ZnO QDs with diameters in the range of 3–7 nm are highly dispersible in various organic solvents. The ZnO QDs exhibit the quantum size effect upon UV emission; it was controlled between 3.39 and 3.54 eV in the present study. The defect-related Vis emission decreased and the UV emission becomes dominant when zinc-di- n-butoxide with a 99.99% zinc purity is used as the starting material. The intensity of the photoluminescence UV emission is 1.5 times higher than that of the Vis emission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.