Abstract

A well-known strategy to achieve higher energy density in lithium-based batteries consists in using metallic lithium as the anode, however, the problematics associated are many and well-known. One solution to enhance battery safety consists in protecting lithium by using a solid electrolyte. Herein the preparation of a new solid polymer composite electrolyte, encompassing room-temperature ionic liquid (RTIL) and ceramic powder is reported. The methacrylate monomer, easily reticulated by UV-curing allows to obtain a highly crosslinked 3D structure matrix, rich in ethoxy groups, fundamental for Li+ conduction. Encompassing of RTIL and ceramic particles allows an enhancement of the ionic conductivity as well as mechanical properties, therefore highly reducing lithium dendrite formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.