Abstract

AbstractMany experiments were carried out in order to evaluate the survival capacity of extremotolerant lichens when facing harsh conditions, including those of outer space or of simulated Martian environment. For further progress, a deeper study on the physiological mechanisms is needed that confer the unexpected levels of resistance detected on these symbiotic organisms. In this work, the response of the lichenized green algaeTrebouxiasp. (a predominant lichen photobiont) to increasing doses of UV-C radiation is studied. UV-C (one of the most lethal factors to be found in space together with vacuum and cosmic-ionizing radiation with high atomic number and energy (HZE) particles) has been applied in the present experiments up to a maximum dose analogue to 67 days in Low Earth Orbit (LEO). For that purpose we selected two extremotolerant and space-tested lichen species in whichTrebouxiasp. is the photosynthetic partner: the crustose lichenRhizocarpon geographicumand the fruticose lichenCircinaria gyrosa.In order to evaluate the effect of the physiological state of the lichen thallus (active when wet and dormant when dry) and of protective structures (cortex and photoprotective pigments) on the resistance of the photobiont to UV-C, four different experimental conditions were tested: (1) dry intact samples, (2) wet intact samples, (3) dry samples without cortex/acetone-rinsed and (4) wet samples without cortex/acetone-rinsed. After irradiation and a 72 hours period of recovery, the influence of UV-C on the two lichen's photobiont under each experimental approach was assessed by two complimentary methods: (1) By determining the photosystem II (PSII) activity in three successive 24 hours intervals (Mini-PAM fluorometer) to investigate the overall state of the photosynthetic process and the resilience ofTrebouxiasp. (2) By performing high performance liquid chromatography (HPLC)-quantification of four essential photosynthetic pigments (chlorophylla, chlorophyllb, β-carotene and lutein) of one sample of each species and dose. Results indicate that the physiological state of the thallus is the most important factor impairing the tolerance ofTrebouxiasp. to UV-C radiation in both lichen species. Desiccated thalli were demonstrated to be more resistant to UV-C. No clear influence of UV-C radiation on the carotenoid content was detected. Comparing the respective doses applied, the individuals ofR. geographicumare more sensitive thanC. gyrosa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.