Abstract

This research aimed to assess the influence of different pre-impregnation times (PITs) (60, 180, and 300 min), heating or reaction times (H/RTs) (60, 90, and 120 min), and chemical modification of wood flour (WF) on the mechanical and physical properties of wood-plastic composites (WPCs). The study employed acetylated beech (Fagus orientalis L.) flour as the filler and polypropylene (PP) as the matrix phase producing of WPC samples through melt compounding and injection molding. The resulting composites underwent testing for their physical and mechanical properties. The findings revealed that WPCs derived from acetylated wood with PITs of 60 min and H/RTs of 60 min exhibited the highest mechanical properties, except for the bending modulus. Moreover, the lowest water absorption (WA) was observed in the PITs-H/RTs combination of 60-120 min, while the lowest thickness swelling (TS) occurred in the PITs-H/RTs combination of 300-60 min. The simultaneous utilization of pre-impregnation and reaction times demonstrated a synergistic effect on the physical and mechanical properties. Consequently, the chemical modification of wood flour and the application of suitable reaction times improved the interfacial adhesion, thereby enhancing the overall performance of the WPCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.