Abstract

Tracking global and regional conflict zones requires spatially explicit information in near real-time. Here, we examined the potential of remote sensing time-series data (night lights) and big data (data mining of news events and Flickr photos) for monitoring and understanding crisis development and refugee flows. We used the recent Arab Spring as a case study, and examined temporal trends in monthly time series of variables which we hypothesized to indicate conflict intensity, covering all Arab countries. Both Flickr photos and night-time lights proved as sensitive indicators for loss of economic and human capital, and news items from the Global Data on Events, Location and Tone (GDELT) project on fight events were positively correlated with actual deaths from conflicts. We propose that big data and remote sensing datasets have potential to provide disaggregated and timely data on conflicts where official statistics are lacking, offering an effective approach for monitoring geopolitical and environmental changes on Earth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.