Abstract
Indonesia is experiencing a rise in natural disasters due to its geographical position within a tropical region, with the Upper Solo River watershed exhibiting a heightened risk of flooding. This region has already suffered numerous floods due to excessive precipitation and insufficient drainage. Susceptibility, hazard, and risk studies have been conducted to investigate this phenomenon but have been limited to specific regions within the catchment area. This study aims to construct a GIS-based flood risk model using Open-Access Spatial Data (OASD) based on diverse physical characteristics, urbanization levels, and population. We used several OASD, including SRTM, Sentinel 2 MSI, GPM v6, NASA-USDA Enhanced SMAP Global Soil Moisture Data, GHS-SMOD R2023A - Global Human Settlement Layers, and GHSL: Global Population Surfaces 1975-2030 (P2023A). The model integrates the risk parameters to identify flood risk using a weighted overlay in ArcGIS. The results demonstrate spatial heterogeneity in flood risk throughout the watershed. The result also reveals that Surakarta City, with a high proportion of its area in the 'High' (57.3%) and 'Very High' (29.54%) risk categories, is at the highest risk of flooding within the watershed. The study enhances understanding of this topic by comprehensively evaluating flood hazards, vulnerabilities, and risks. It highlights the significance of utilizing low-cost OASD to improve flood preparedness and response strategies.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have