Abstract
Monitoring the amount of chemotherapeutic drugs in biological fluids is extremely important for dose adjustment or control of side effects during the treatment process. In this study, copper nanoclusters (Cu NCs) were synthesized via a one-pot method using ammonium citrate as the reducing agent. Cu NCs exhibited bright blue fluorescence, good optical properties and outstanding photostability. The produced Cu NCs were characterized in detail by UV‒vis absorption, fluorescence spectroscopy and transmission electron microscopy (TEM). The produced Cu NCs showed a high quantum yield of 0.97. A fluorescence system was used for doxorubicin (DOX) determination using Cu NCs as a nanoprobe. The presence of DOX decreased the fluorescence intensity of the CuNCs at 445nm but increased the fluorescence intensity of the CuNCs at 619nm. As a result, quantitative detection of DOX can be achieved by measuring the ratio of fluorescence intensities at 445 and 619nm (F619/F445). The fluorescence quenching activity of the Cu NCs was determined to have a linear relationship with the amount of DOX anticancer drug in the range of 1-15 ppb, and the usability of the Cu NCs as a sensor for detection in biological fluids was demonstrated. It was determined that this method can be used to measure the amount of DOX in biological samples effectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.