Abstract

Pesticide residues exceeding standard in green tea is a widespread problem of the world's attention, containing organochlorine pesticides (OCPs), organophosphorus pesticides (OPPs), and pyrethroids. In this research, three dimensionally honeycomb Mg-Al layered double oxide (TDH-Mg-Al-LDO) combined with graphitized carbon black (GCB), packed as a column, was used as a novel solid phase extraction sorbent, applying in simultaneous determination of 15 pesticide residues in green tea coupled with GC-MS. Compared with different type of SPE column, it showed that TDH-Mg-Al-LDO exhibited great advantages in the extraction of 15 pesticide residues from green tea, which was seldom reported before. Different experiment conditions, such as combination order of Mg-Al-LDO and GCB, dosage of sorbents, type and volume of eluting solvent were thoroughly studied and optimized. The limits of detection (LODs) of 15 pesticides ranged from 0.9 to 24.2ng/g and the limits of quantifications (LOQs) were ranging from 3.0 to 80.0ng/g. The recoveries using this method at three spiked concentration levels (10, 100 and 500ng/g for Fenthion, P,P'-DDE, O,P'-DDT, P,P'-DDD and Bifenthrin, 100, 500 and 2000ng/g for the others) range from 71.1 to 119.0%. The relative standard deviation (RSD) was from 0.1 to 7.6% in all case. The result indicated that the proposed analytical method had been successfully applied for the simultaneous determination of 15 pesticide residues in commercial green tea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.