Abstract

Cross-wind degrades the performance of a natural draft dry cooling tower (NDDCT). Based on the basic affecting mechanism, this paper introduces a wind collecting approach. By using a wind collecting duct, the lateral flow acceleration of cross-wind is broken up, and the lateral flow kinetic energy is utilized to increase the lateral and rearward static pressure outside the radiator inlet. By adoption of a CFD model, the effect of the wind collecting approach is investigated comprehensively. It is found that the wind collecting ducts could improve the pressure distribution around the radiator bundle, reinforce the lateral air intake, and reduce the intensity of mainstream vortices, so as to enhance the ventilation rate of a NDDCT. For an outstanding performance, the two-duct wind collecting scheme is suggested, which may assure a NDDCT working in an approximately wind free manner in all investigated cross-wind range, and increase the ventilation rate by ~63% under the high cross-wind condition, which may reduce the overall coal consumption by 23500~33500 tons annually for a 660 MW coal-fired unit. The numerical results are confirmed by a hot state modelling experiment conducted in a wind tunnel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.