Abstract

Green seed canola oil is underutilized for edible purposes due to its high chlorophyll content, which makes it more susceptible to photo-oxidation and ultimately reduces the oxidation stability. The present work is an attempt to compare the kinetics of epoxidation of crude green seed canola oil (CGSCO) and treated green seed canola oil (TGSCO) with peroxyacids generated in situ in presence of an Amberlite IR-120 acidic ion exchange resin (AIER) as catalyst. Among the two oxygen carrier studied, acetic acid was found to be a better carrier than the formic acid, as it gives 8% more conversion of double bond than the formic acid. A detailed process developmental study was then performed with the acetic acid/AIER combination. For the oils under investigation parameters optimized were temperature (55°C), hydrogen peroxide to double bond molar ratio (2.0), acetic acid to double bond molar ratio (0.5), and AIER loading (15%). An iodine conversion of 90.33, 90.20%, and a relative epoxide yield of 90, 88.8% were obtained at the optimum reaction conditions for CGSCO and TGSCO, respectively. The formation of the epoxide product of CGSCO and TGSCO was confirmed by Fourier Transform IR Spectroscopy (FTIR) and NMR (1H NMR) spectral analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.