Abstract

The current treatment of ocular neovascularization requires frequent intravitreal injections of anti-vascular endothelial growth factor (VEGF) agents that cause severe side effects. The purpose of this study is to prepare and characterize a novel nanoscale delivery system of apatinib for ocular neovascularization. The optimized formulation showed a particle size of 135.04 nm, polydispersity index (PDI) of 0.28 ± 0.07, encapsulation efficiency (EE) of 65.92%, zeta potential (ZP) of -23.70 ± 8.69 mV, and pH of 6.49 ± 0.20. In vitro release was carried out to demonstrate a 3.13-fold increase in the sustainability of apatinib-loaded nanoparticles versus free apatinib solution. Cell viability and VEGFA and VEGFR2 expression were analyzed in animal retinal pigment epithelial (ARPE-19) cells. The results confirmed the hypothesis that apatinib nanoparticles decreased toxicity (1.36 ± 0.74 fold) and efficient VEGF inhibition (3.51 ± 0.02 fold) via VEGFR2 mediation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.