Abstract

Recent technological developments in three-dimensional (3D) printing have created new opportunities for applications in clinical medicine. 3D printing has been adopted for teaching and planning complicated surgeries, including maxillofacial, orthopedic reconstructions, and airway manipulation for one-lung ventilation or airway stenting. We present here the first use of such technology to print a model from in utero imaging for intrapartum treatment planning. A 32-week fetus presented with congenital high airway obstruction syndrome (CHAOS) due to a large cervical lymphatic malformation. An ex utero intrapartum treatment (EXIT) procedure was planned to allow delivery of a viable infant. We printed a 3D model of the fetal airway by printing separate elements: mandible, tongue, mass, larynx, and trachea from the fetal MRI. The elements were stuck together maintaining correct anatomical relationships. Airway planning was then performed in consultation with a pediatric ear nose and throat (ENT) surgeon. 3D modeling in utero presents many challenges: the resolution of the 3D model generated from a fetal MRI is less crisp than from CT images, fetal position may be variable and not in a defined anatomical plane, movement artifact occurs. Nevertheless, pre-procedure simulations with the aid of 3D modeling promoted team cooperation and well-prepared management of the fetus during EXIT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.