Abstract
Discrete choice models (DCMs) are applied in many fields and in the statistical modelling of consumer behavior. This paper focuses on a form of choice experiment, best–worst scaling in discrete choice experiments (DCEs), and the transition probability of a choice of a consumer over time. The analysis was conducted by using simulated data (choice pairs) based on data from Flynn’s (2007) ‘Quality of Life Experiment’. Most of the traditional approaches assume the choice alternatives are mutually exclusive over time, which is a questionable assumption. We introduced a new copula-based model (CO-CUB) for the transition probability, which can handle the dependent structure of best–worst choices while applying a very practical constraint. We used a conditional logit model to calculate the utility at consecutive time points and spread it to future time points under dynamic programming. We suggest that the CO-CUB transition probability algorithm is a novel way to analyze and predict choices in future time points by expressing human choice behavior. The numerical results inform decision making, help formulate strategy and learning algorithms under dynamic utility in time for best–worst DCEs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.