Abstract

Kohonen self-organizing maps (SOM) belong to the non-supervised artificial neural network modelling methods. It typically displays a high dimensional data set in a lower dimensional space. In this way, that method can be considered as a non-linear surrogate to the principal component analysis (PCA). In order to test the efficiency of SOM on complex ecological data gathered in the natural environment, we made a comparison between PCA and SOM capabilities to analyse the spatial occupancy of several European freshwater fish species in the littoral zone of a large French lake. The same data matrix consisting of 710 samples and 15 species was analysed using PCA and SOM. Both methods provided insights on the major trends in fish spatial occupancy. However, a more detailed analysis showed that only SOM was able to reliably visualise the entire fish assemblage in a two dimensional space (i.e. both dominant and scarce species). On the contrary PCA provided irrelevant ecological information for some species. These drawbacks were afforded to data heterogeneity, scarce species being poorly represented on the PCA plane. These results led us to conclude that SOM constitute a more reliable data representation method than PCA when complex ecological data sets are used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.