Abstract
Novel high spin tri-, tetra-, pentaradicals, composed of triazine coupling units and cationic amino radical spin centers (+⋅NH) under various configurations and linkages, are predicted from AM1-CI calculations. It is found that for charged planar multiradicals the stability of high spin ground states depends on both the molecular configuration and the number of end groups. Generally, cyclic 1,3-bridged charged multiradicals ( S≤5/2) possess more stable high spin ground states than their isomers under the branched 1,3,5,-bridged configuration. Therefore, it is suggested that in the design of planar high spin molecules with stable high spin ground states, less end groups and all the supposed spin centers and/or the coupling units should be under the same structural situation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.