Abstract

A variant of the plane-sweep paradigm known as topological sweep is adapted to solve geometric problems involving two-dimensional regions when the underlying representation is a region quadtree. The utility of this technique is illustrated by showing how it can be used to extract the boundaries of a map inO(M) space andO(Mα(M)) time, whereM is the number of quadtree blocks in the map, andα(·) is the (extremely slowly growing) inverse of Ackerman's function. The algorithm works for maps that contain multiple regions as well as holes. The algorithm makes use of active objects (in the form of regions) and an active border. It keeps track of the current position in the active border so that at each step no search is necessary. The algorithm represents a considerable improvement over a previous approach whose worst-case execution time is proportional to the product of the number of blocks in the map and the resolution of the quadtree (i.e., the maximum level of decomposition). The algorithm works for many different quadtree representations including those where the quadtree is stored in external storage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.