Abstract

The energy loss during jet quenching due to the existence of Quark Gluon Plasma (QGP) is calculated by Optical Glaube Monte Carlo model with data collected by ATLAS Collaboration using the LHC detector. An energy loss formula for this situation was modeled and took the form . The nuclear modification factor, RAA, for jets in a 208Pb + 208Pb nucleus collision with rapidity interval of ∣у∣=2.8 and the initial transverse momentum of 50 GeV ≤ pT ≤ 1000 GeV, are compared with various data plots produced by ATLAS Collaboration. RAA results are plotted in different centrality bins, which are defined by the distribution of number of participating nucleons Npart. The RAA value was found to slowly increase at lower transverse momenta and flatten out at higher transverse momenta. The model’s theoretical calculation results turned out to be similar to the plots produced by the ATLAS Collaboration using data from the LHC with small differences for higher systematic uncertainty events.

Highlights

  • High energy ultra relativistic heavy-ion collisions between two atomic nuclei in particle accelerators can result in a condensed substance that exhibits fluid-like properties known as Quark Gluon Plasma (QGP) [1], which is mainly constituted of colour charge carriers

  • Using data provided by the ATLAS Collaboration from the LHC detector, this paper aims to analyze the relationship between pT and RAA under different centrality ranges, attempt to find a formula for the jet energy loss, and reproduce some of the plots presented in the paper by the ATLAS Collaboration [5] through the use of computer simulations built under the Optical Monte Carlo Model

  • Most of the data points presented by the model can potentially lie directly on top of the ATLAS data if luminosity uncertainty is considered. This is a proof that the energy loss formula is sufficient to compensate most the ultra-relativistic quantum effects that are not considered in the Optical Glauber Monte Carlo model

Read more

Summary

Introduction

High energy ultra relativistic heavy-ion collisions between two atomic nuclei in particle accelerators can result in a condensed substance that exhibits fluid-like properties known as Quark Gluon Plasma (QGP) [1], which is mainly constituted of colour charge carriers (e.g. quarks and gluons). Like vector-bosons and quarkonia, are a form of hard probes, for their signatures going through QGP are different compared to their signatures when moving through vacuum. The energy by which a jet loses is dependent on its initial transverse momentum pT and the distance through the QGP that the jet travels, which is modeled by the distance through the participating nucleons that the jet penetrates (L). This energy suppression could be observed by comparing the jet pT distribution in Pb + Pb collisions to the jet yield of pp collisions

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.