Abstract

It is difficult to obtain reliable shear strength parameters for the stability analysis and evaluation of tailings dams in an unstable state. In this study, the sensitivity of the shear strength index to the safety factor of a tailings dam was evaluated. The cohesion C range of a tailings earth rock dam in an unstable state is determined by the safety factor, and the Morgenstern–Price method is used for inversion. During parameter inversion, uncertainty reasoning is established based on cloud theory, which overcomes the problem that the fuzziness and randomness of the quantitative cohesion value are transferred to the qualitative concept of the safety factor. The results show that the change in cohesion C has a greater influence on the safety factor Fs of the tailings dam, and the value of parameter inversion is 8.6901 kPa. The deformation and failure of tailings dams under extreme rainfall conditions are analyzed by using the modified cohesion C value. The dam toe becomes the main response area of plastic deformation and slowly expands to the interior, showing creep deformation. The displacement field gradually transfers from the accumulated tailings to the tailings dam with the flow direction, causing erosion damage. This study provides a new idea and method for parameter inversion of the shear strength index of tailings dams and provides a reference for the disaster prediction and prevention of tailings dams subjected to extreme rainfall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.