Abstract

Many cancer chemotherapeutic agents form DNA interstrand crosslinks (ICLs), extremely cytotoxic lesions that form covalent bonds between two opposing DNA strands, blocking DNA replication and transcription. However, cellular responses triggered by ICLs can cause resistance in tumor cells, limiting the efficacy of such treatment. Here we discuss recent advances in our understanding of the mechanisms of ICL repair that cause this resistance. The recent development of strategies for the synthesis of site-specific ICLs greatly contributed to these insights. Key features of repair are similar for all ICLs, but there is increasing evidence that the specifics of lesion recognition and synthesis past ICLs by DNA polymerases are dependent upon the structure of ICLs. These new insights provide a basis for the improvement of antitumor therapy by targeting DNA repair pathways that lead to resistance to treatment with crosslinking agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.