Abstract
ABSTRACT With recent advances in machine learning, we demonstrated the use of supervised machine learning to optimize the prediction of treatment outcomes of vedolizumab through iterative optimization using VARSITY and VISIBLE 1 data in patients with moderate-to-severe ulcerative colitis. The analysis was carried out using elastic net regularized regression following a 2-stage training process. The model performance was assessed through AUROC, specificity, sensitivity, and accuracy. The generalizable predictive patterns suggest that easily obtained baseline and medical history variables may be able to predict therapeutic response to vedolizumab with clinically meaningful accuracy, implying a potential for individualized prescription of vedolizumab.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.