Abstract

Software maintenance, especially bug prediction, plays an important role in evaluating software quality and balancing development costs. This study attempts to use several quantitative network metrics to explore their relationships with bug prediction in terms of software dependency. Our work consists of four main steps. First, we constructed software dependency networks regarding five dependency scenes at the class-level granularity. Second, we used a set of nine representative and commonly used metrics—namely, centrality, degree, PageRank, and HITS, as well as modularity—to quantify the importance of each class. Third, we identified how these metrics were related to the proneness and severity of fixed bugs in Tomcat and Ant and determined the extent to which they were related. Finally, the significant metrics were considered as predictors for bug proneness and severity. The result suggests that there is a statistically significant relationship between class’s importance and bug prediction. Furthermore, betweenness centrality and out-degree metric yield an impressive accuracy for bug prediction and test prioritization. The best accuracy of our prediction for bug proneness and bug severity is up to 54.7% and 66.7% (top 50, Tomcat) and 63.8% and 48.7% (top 100, Ant), respectively, within these two cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.