Abstract
There has been growing interest in harnessing Artificial Intelligence (AI) to improve situational awareness for disaster management. However, to the authors’ best knowledge, few studies have focused on socio-economic recovery. Here, as a first step toward investigating the possibility of developing an AI-based method for detecting socio-economic recovery, this study provides fundamental insights about the correlations between public sentiment on social media and socio-economic recovery activities as reflected in market data. Our result shows multiple correlations between sentiment on social media and the socio-economic recovery activities involved in restarting daily routines. Conventional socio-economic recovery indicators, such as governmental statistical data, have a significant time lag before publishing. Therefore, by taking advantages of the real timeliness and the effectiveness of seizing communication trends of massive social media data, using public sentiment on social media can improve situational awareness in recovery operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.