Abstract

With growing scientific evidence showing the harmful impact of air pollution on the environment and individuals’ health in modern societies, public concern about air pollution has become a central focus of the development of air pollution prevention policy. Past research has shown that social media is a useful tool for collecting data about public opinion and conducting analysis of air pollution. In contrast to statistical sampling based on survey approaches, data retrieved from social media can provide direct information about behavior and capture long-term data being generated by the public. However, there is a lack of studies on how to mine social media to gain valuable insights into the public’s pro-environmental behavior. Therefore, research is needed to integrate information retrieved from social media sites into an established theoretical framework on environmental behaviors. Thus, the aim of this paper is to construct a theoretical model by integrating social media mining into a value-belief-norm model of public concerns about air pollution. We propose a hybrid method that integrates text mining, topic modeling, hierarchical cluster analysis, and partial least squares structural equation modelling (PLS-SEM). We retrieved data regarding public concerns about air pollution from social media sites. We classified the topics using hierarchical cluster analysis and interpreted the results in terms of the value-belief-norm theoretical framework, which encompasses egoistic concerns, altruistic concerns, biospheric concerns, and adaptation strategies regarding air pollution. Then, we used PLS-SEM to confirm the causal relationships and the effects of mediation. An empirical study based on the concerns of Taiwanese social media users about air pollution was used to demonstrate the feasibility of the proposed framework in general and to examine gender differences in particular. Based on the results of the empirical studies, we confirmed the robust effects of egoistic, altruistic, and biospheric concerns of public impact on adaptation strategies. Additionally, we found that gender differences can moderate the causal relationship between egoistic concerns, altruistic concerns, and adaptation strategies. These results demonstrate the effectiveness of enhancing perceptions of air pollution and environmental sustainability by the public. The results of the analysis can serve as a basis for environmental policy and environmental education strategies.

Highlights

  • Air pollution has become a major problem in modern societies due to its significant impacts on human health, the climate, and the ecosystem in general [1]

  • To retrieve information from social media and confirm the value-belief-norm model, we propose a hybrid method that integrates text mining, topic modeling, hierarchical cluster analysis, and partial least squares structural equation modelling (PLS-SEM)

  • An empirical study based on the concerns of Taiwanese social media users about air pollution was used to demonstrate the feasibility of the proposed framework in general and to examine gender differences in particular

Read more

Summary

Introduction

Air pollution has become a major problem in modern societies due to its significant impacts on human health, the climate, and the ecosystem in general [1]. Epidemiological research has shown that there is a relationship between air pollutants and risk of diseases such as type 2 diabetes mellitus [2], rheumatoid arthritis [3], Parkinson’s disease [4], as well as the incidence of chronic obstructive pulmonary disease (COPD) and asthma [5].

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.