Abstract

The unique properties of selenocysteine (Sec) have generated an interest in the scientific community to site-specifically incorporate Sec into a protein of choice. Current technologies have rewired the natural Sec-specific translation factor-dependent selenoprotein biosynthesis pathway by harnessing the canonical elongation factor (EF-Tu) to simplify the requirements for Sec incorporation in Escherichia coli. This strategy is versatile and can be applied to Sec incorporation at any position in a protein of interest. However, selenoprotein production is still limited by yield and serine misincorporation. This protocol outlines a method in E. coli to design and optimize tRNA libraries which can be selected and screened for by the use of Sec-specific intein-based reporters. This provides a fast and simple way to engineer tRNAs with enhanced Sec-incorporation ability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.