Abstract
Receiver operating characteristic (ROC) functions are often used to make inferences about memory processes, such as claiming that memory strength is more variable for studied versus nonstudied items. However, decision processes can produce the ROC patterns that are usually attributed to memory, so independent forms of data are needed to support strong conclusions. The present experiments tested ROC-based claims about the variability of memory evidence by modeling response time (RT) data with the diffusion model. To ensure that the model can correctly discriminate equal- and unequal-variance distributions, Experiment 1 used a numerousity discrimination task that had a direct manipulation of evidence variability. Fits of the model produced correct conclusions about evidence variability in all cases. Experiments 2 and 3 explored the effect of repeated learning trials on evidence variability in recognition and source memory tasks, respectively. Fits of the diffusion model supported the same conclusions about variability as the ROC literature. For recognition, evidence variability was higher for targets than for lures, but it did not differ on the basis of the number of learning trials for target items. For source memory, evidence variability was roughly equal for source 1 and source 2 items, and variability increased for items with additional learning attempts. These results demonstrate that RT modeling can help resolve ambiguities regarding the processes that produce different patterns in ROC data. The results strengthen the evidence that memory strength distributions have unequal variability across item types in recognition and source memory tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.