Abstract

We propose a novel framework for achieving precision landing in drone services. The proposed framework consists of two distinct decoupled modules, each designed to address a specific aspect of landing accuracy. The first module is concerned with intrinsic errors, where new error models are introduced. This includes a spherical error model that takes into account the orientation of the drone. Additionally, we propose a live position correction algorithm that employs the error models to correct for intrinsic errors in real time. The second module focuses on external wind forces and presents an aerodynamics model with wind generation to simulate the drone’s physical environment. We utilize reinforcement learning to train the drone in simulation with the goal of landing precisely under dynamic wind conditions. Experimental results, conducted through simulations and validated in the physical world, demonstrate that our proposed framework significantly increases landing accuracy while maintaining a low onboard computational cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.