Abstract

Developing a bead shape to process parameter model is challenging due to the multiparameter, nonlinear, and dynamic nature of the laser cladding (LC) environment. This introduces unique predictive modeling challenges for both single bead and overlapping bead configurations. It is essential to develop predictive models for both as the boundary conditions for overlapping beads are different from a single bead configuration. A single bead model provides insight with respect to the process characteristics. An overlapping model is relevant for process planning and travel path generation for surface cladding operations. Complementing the modeling challenges is the development of a framework and methodologies to minimize experimental data collection while maximizing the goodness of fit for the predictive models for additional experimentation and modeling. To facilitate this, it is important to understand the key process parameters, the predictive model methodologies, and data structures. Two modeling methods are employed to develop predictive models: analysis of variance (ANOVA), and a generalized reduced gradient (GRG) approach. To assist with process parameter solutions and to provide an initial value for nonlinear model seeding, data clustering is performed to identify characteristic bead shape families. This research illustrates good predictive models can be generated using multiple approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.