Abstract

Field metrics were investigated using the conifer species Pinus uncinata for the biomonitoring of tropospheric ozone in the Pyrenees of Catalonia, Spain. The Ozone Injury Index (OII) was investigated piecewise for improvement as a biomonitoring field metric for using sensitive conifer species to monitor tropospheric ozone across variable environmental conditions. The OII employs a weighted average of visual chlorotic mottling (VI), needle whorl retention (RET), needle length (LGT), and crown death (CD). Of note, VI includes subcomponents VI-Amount (% of symptomatic needles) and VI-Severity (% of chlorotic mottling on symptomatic needles) and RET includes the FWHORL subcomponent (average fraction of needles retained per whorl). All components and subcomponents of the OII correlated better to multiple year ozone exposure compared to single year ozone exposure measurements. VI-Severity and FWHORL modeled over half the variability of the three year average of ambient ozone concentrations (P<0.0001, R2=0.53, RMSE=2.73). Combining the biomonitoring metrics with GIS models related to landscape-scale variability in plant water relations resulted in considerable improvement in the ozone exposure model explanatory power (P<0.0001, R2=0.90, RMSE=1.35) including the parameters VI-Amount, VI-Severity, elevation, slope and topographic curvature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.