Abstract
Knowledge of pharmacokinetics and the use of a mechanistic-based approach can improve our ability to predict the effects of pregnancy for medications when data are limited. Despite the many physiological changes that occur during pregnancy that could theoretically affect absorption, bioavailability does not appear to be altered. Decreased albumin and α1-acid glycoprotein concentrations during pregnancy will result in decreased protein binding for highly bound drugs. For drugs metabolised by the liver, this can result in misinterpretation of total plasma concentrations of low extraction ratio drugs and overdosing of high extraction ratio drugs administered by non-oral routes. Renal clearance and the activity of the CYP isozymes, CYP3A4, 2D6 and 2C9, and uridine 5′-diphosphate glucuronosyltransferase are increased during pregnancy. In contrast, CYP1A2 and 2C19 activity is decreased. The dose of a drug an infant receives during breastfeeding is dependent on the amount excreted into the breast milk, the daily volume of milk ingested and the average plasma concentration of the mother. The lipophilicity, protein binding and ionisation properties of a drug will determine how much is excreted into the breast milk. The milk to plasma concentration ratio has large inter- and intrasubject variability and is often not known. In contrast, protein binding is usually known. An extensive literature review was done to identify case reports including infant concentrations from breast-fed infants exposed to maternal drugs. For drugs that were at least 85% protein bound, measurable concentrations of drug in the infant did not occur if there was no placental exposure immediately prior to or during delivery. Knowledge of the protein binding properties of a drug can provide a quick and easy tool to estimate exposure of an infant to medication from breastfeeding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.