Abstract

In this research, a general solution of volume constancy differential equation is presented based on the equation of deformation field for a general process. As the Bezier method is suitable for construction of complex geometries, the solution is used in conjunction with the Bezier method to analyze the equal channel angular extrusion (ECAE) process of rectangular cross section. Thus, a generalized kinematically admissible velocity field is derived from the equation of deformation zone such that the compatibility of the surface representing the deformation zone is fulfilled. The effects of die angle, friction between the billet and die wall, and the angle of outer curved corner, on extrusion pressure are all considered in the analysis. It is found that extrusion pressure decreases with increasing both the die angle and the outer curved corner angle and with decreasing the friction coefficient. Also, the effect of die curvature on inhemogenity of strain is assessed. It is exhibited that increasing the angle of outer curved corner decreases the extrusion pressure and increases the inhomogeniety of strain field of deformation zone. A good agreement is found between the predicted and experimental results pertaining to two dies of different outer curved corner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.