Abstract

Neutron reflectometry has been successfully used to study adsorption on a stainless steel surface by means of depositing a thin steel film on silicon. The film was characterized using XPS (X-ray photoelectron spectroscopy), TOF-SIMS (time-of-flight secondary ion mass spectrometry), and GIXRD (grazing incidence X-ray diffraction), demonstrating the retention both of the austenitic phase and of the required composition for 316L stainless steel. The adsorption of fibrinogen from a physiologically-relevant solution onto the steel surface was studied using neutron reflectometry and QCM (quartz crystal microbalance) and compared to that on a deposited chromium oxide surface. It was found that the protein forms an irreversibly bound layer at low concentrations, with maximum protein concentration a distance of around 20 Å from the surface. Evidence for a further diffuse reversibly-bound layer forming at higher concentrations was also observed. Both the structure of the layer revealed by the neutron reflectometry data and the high water retention predicted by the QCM data suggest that there is a significant extent of protein unfolding upon adsorption. A lower extent of adsorption was seen on the chromium surfaces, although the adsorbed layer structures were similar, suggesting comparable adsorption mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.