Abstract

The influence of surface geometry on adsorbed proteins offers new possibilities for controlling quaternary structure by manipulating protein-protein interactions at a surface, with applications that are relevant to protein aggregation, fibrillation, ligand binding, and surface catalysis. To understand the effect of surface curvature on the structure of the surface-bound protein β-lactoglobulin (β-LG), we have used a combination of polystyrene (PS) nanoparticles (NPs) and ultrathin PS films to fabricate chemically pure, hydrophobic surfaces that have nanoscale curvature and are stable in aqueous buffer. We have used single molecule force spectroscopy to measure the detachment contour lengths L(c) for β-LG adsorbed on the highly curved PS surfaces, and we compare these values in situ to those measured for β-LG adsorbed on flat PS surfaces on the same samples. The L(c) distributions measured on all flat PS surfaces show a large monomer peak near 60 nm and a smaller dimer peak at 120 nm. For 190 and 100 nm diameter NPs, which are effectively flat on the scale of the β-LG molecules, there is no measurable difference between the L(c) distributions obtained for the flat and curved surfaces. However, for 60 nm diameter NPs the dimer peak is smaller, and for 25 nm diameter NPs the dimer peak is absent, indicating that the number of surface-bound dimers is significantly reduced by an increase in the curvature of the underlying surface. These results indicate that surface curvature provides a new method of manipulating protein-protein interactions and controlling the quaternary structure of adsorbed proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.