Abstract

AbstractMXene usually exhibits weak pseudo‐capacitance behavior in aqueous zinc‐ion batteries, which cannot provide sufficient reversible capacity, resulting in the decline of overall capacity when used as the cathode materials. Taking inspiration from polymer electrolyte engineering, we have conceptualized an in situ induced growth strategy based on MXene materials. Herein, 5.25 % MXene was introduced into the nucleation and growth process of vanadium oxide (HVO), providing the heterogeneous nucleation site and serving as an initiator to regulate the morphology and structural of vanadium oxide (T‐HVO). The resulted materials can significantly improve the capacity and rate performance of zinc‐ion batteries. The growth mechanism of T‐HVO was demonstrated by both characterizations and DFT simulations, and the improved performance was systematically investigated through a series of in situ experiments related to dynamic analysis steps. Finally, the evaluation and comparison of various defect introduction strategies revealed the efficient, safety, and high production output characteristics of the in situ induced growth strategy. This work proposes the concept of in situ induced growth strategy and discloses the induced chemical mechanism of MXene materials, which will aid the understanding, development, and application of cathode in aqueous zinc‐ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.