Abstract

As processors seek more resource efficiency, they increasingly need to target multiple goals at the same time, such as a level of performance, power consumption, and average utilization. Robust control solutions cannot come from heuristic-based controllers or even from formal approaches that combine multiple single-parameter controllers. Such controllers may end-up working against each other. What is needed is control-theoretical MIMO (multiple input, multiple output) controllers, which actuate on multiple inputs and control multiple outputs in a coordinated manner. In this paper, we use MIMO control-theory techniques to develop controllers to dynamically tune architectural parameters in processors. To our knowledge, this is the first work in this area. We discuss three ways in which a MIMO controller can be used. We develop an example of MIMO controller and show that it is substantially more effective than controllers based on heuristics or built by combining single-parameter formal controllers. The general approach discussed here is likely to be increasingly relevant as future processors become more resource-constrained and adaptive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.