Abstract

Machine learning classification approaches were used to discriminate a fishy off-flavour identified in beef with health-enhanced fatty acid profiles. The random forest approach outperformed (P < 0.001; receiver operating characteristic curve: 99.8 %, sensitivity: 99.9 % and specificity: 93.7 %) the logistic regression, partial least-squares discrimination analysis and the support vector machine (linear and radial) approaches, correctly classifying 100 % and 82 % of the fishy and non-fishy meat samples, respectively. The random forest algorithm identified 20 volatile compounds responsible for the discrimination of fishy from non-fishy meat samples. Among those, seven volatile compounds (pentadecane, octadecane, γ-dodecalactone, dodecanal, (E,E)-2,4-heptadienal, 2-heptanone, and ethylbenzene) were selected as significant contributors to the fishy off-flavour fingerprint, all being related to lipid oxidation. This fishy off-flavour fingerprint could facilitate the rapid monitoring of beef with enhanced healthy fatty acids to avoid consumer dissatisfaction due to fishy off-flavour.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.